Электрический ток, в т.ч. и ток плазмы, возникает между двумя телами, имеющими различные электрические заряды. В этом случае позитивно заряженное тело (принимающее электроны с целью балансирования заряда) называют «анодом», а негативно заряженное тело (отдающее электроны) — «катодом».
Если разность потенциалов достаточно высока, расстояние между двумя электродами (анодом и катодом) достаточно мало и газ в среде достаточно плотен, то газ ионизируется (то есть разделение заряда высвобождает электроны). Затем начинается балансирование зарядов между двумя телами путем перехода электронов от катода к аноду, или позитивных ионов от анода к катоду (или обоими способами). Это очень распространённое явление. Например, его можно наблюдать в люминесцентных лампах и плазменных шарах.
В плазменных шарах плазменные нити (т.е. потоки электронов и позитивных ионов) тянутся от центрального электрода к стеклу — внешнему электроду — для того, чтобы сбалансировать разницу зарядов. Запомните этот пример, поскольку это очень хорошая аналогия того, что происходит в звёздном пространстве и даже в галактических масштабах.
Виды разрядов
Плазма проявляет различные виды разряда в зависимости от плотности проходящего через неё тока (ампер на квадратный метр). При слабом токе происходит «тёмный разряд», что означает отсутствие видимого излучения и света. Это то, что, например, происходит с тёмными астероидами, тёмными звёздами или в межзвёздном пространстве (как мы увидим в следующей главе при рассмотрении масштабируемости плазмы). Через плазму просто проходит очень слабый ток, чтобы заставить её светиться.
Когда плотность тока увеличивается, плазма начинает светиться. Это можно наблюдать в люминесцентных лампах, в кометах (т.е. светящихся астероидах) или в солнечной короне. Это называют «тлеющим разрядом» .
При дальнейшем усилении электрического тока плазма приобретает форму«дугового разряда», выражающегося во внезапных и мощных электрические разрядах. Это то, что можно наблюдать в молниях или при дуговой сварке. Это также тот самый феномен, который мы наблюдали в упомянутом выше плазменном шаре. Ещё это может происходить в кометах, приводя к их взрывному свечению и/или разрушению, как это случилось с известной кометой Шумейкера-Леви [24] и другими кометами. На рисунке изображены три вида разрядов плазмы.
Итак, плазма может проявлять три вида разрядов, в зависимости от плотности протекающего через неё тока.
Масштабируемость плазмы
Очень интересным свойством плазмы является её масштабируемость. Это означает, что плазма проявляет схожие характеристики вне зависимости от масштаба: как в лаборатории, так и в космосе. Фактически плазму можно наблюдать в широком диапазоне расстояний, а не только на атомарном уровне. Этот диапазон начинается на 10-10 метрах в диаметре и доходит до галактического масштаба, который для нашего Млечного Пути составляет примерно 1020 метров в диаметре.
Это означает, что плазма простирается в линейных размерах на 30 порядков. Она имеет схожие свойства во всем диапазоне (т.е. от 10-10 до 1020метров). Рисунок выше иллюстрирует это сходство между микроскопической плазмой (на атомарном уровне) и макроскопической плазмой (в масштабе Солнечной системы).
Благодаря такой широкой масштабируемости космологи имеют возможность проводить наблюдения, формулировать гипотезы и, самое главное, проверять их в лабораториях (т.е. на микроскопическом уровне) и по методу аналогии применять их результаты к плазме, существующей в гораздо более крупном масштабе (космические феномены, например). С этой точки зрения, лабораторные эксперименты над плазмой, примененные к космическим феноменам, схожи с испытаниями самолётов или изучением естественного турбулентного потока в аэродинамической трубе на моделях меньшего масштаба с последующим применением результатов на реальных объектах.
Эта возможность проводить проверки позволяет выдвигать гипотезы и проверять теории в различных практических экспериментах, что является очень важным аспектом научного метода, как было сказано философом Карлом Поппером:
Критерием научного статуса теории является её фальсифицируемость, опровержимость, или проверяемость.
Ссылки
[21]: Demidov, B. A. et al., 'Anomalous Resistance And Microwave Radiation From A Plasma In A Strong Electric Field', Soviet Physics (август 1965 г.) 21(2)
[22]: Импеданс является формой сопротивления. Чем он выше, тем ниже проводимость.
[23]: Cebik, L. B., 'Some (Old) Notes on Home-Brew Parallel Transmission Lines', QSL.
См.: www.qsl.net/co8tw/openline.htm
[24]: Мы рассмотрим это событие детальнее в главе 18: «Кометы или астероиды?»
Комментарий: Читайте все переведенные главы из книги Пьерра Лескодро (Pierre Lescaudron) «Земные изменения и взаимосвязь между человеком и космосом» (Earth Changes and the Human Cosmic Connection), и другие интересные статьи, имеющие отношение к этой же тематике:
Сборник статей на тему земные изменения и взаимосвязь между человеком и космосом, и теория электрической вселенной