Нейрофизиологи из университета Дьюка совершили очередной прорыв - им удалось объединить в "локальную сеть" мозг двух и трех макак-резусов и сообща работать для решения общей задачи.
Изображение
© Duke Center for Neuroengineering
Нейрофизиологи создали революционный нейроинтерфейс, который позволил им объединить мозг трех макак-резусов и четырех крыс в своеобразную локальную сеть и заставить их вместе решать одну и ту же задачу, говорится в двух статьях, опубликованной в журнале Scientific Reports.

"Это первая демонстрация работоспособного интерфейса мозг-компьютер с опцией "совместного подключения", который, как мы надеемся, будет развиваться, как и его обычные предшественники, двигаясь от опытов на животных к клиническим испытаниям. Мы предвидим, что наше изобретение найдет свое место в медицинской практике уже очень скоро", — заявил Мигель Николелис (Miguel Nicolelis) из университета Дьюка в Дареме (США).

Николелис, один из главных пионеров в области нейропротезирования, уже несколько лет работает над созданием нейроинтерфейсов - набора микрочипов, особых электродов и компьютерных программ, позволяющих подключать к мозгу человека и животных кибер-конечности, искусственные глаза и даже те органы чувств, аналогов которых нет в природе - тепловизоры и рентгеновизоры.
Изображение
© Katie Zhuang, Laboratory of Dr. Miguel Nicolelis, Duke University
В марте 2013 года Николелис и его коллеги совершили прорыв - они смогли объединить мозг двух крыс, живущих в тысячах километров друг от друга, в своеобразную "локальную сеть", или, как назвали эту конструкцию сами ученые, "органический компьютер", и научить их обмениваться информацией.

Сегодня его команда пошла дальше - нейрофизиологи из университета Дьюка разработали две новых модели "совместного" нейроинтерфейса, одна из которых позволила им объединить в единую сеть мозги двух или трех обезьян, а вторая - собрать "органический компьютер" из четырех крыс.

Работу первой системы они продемонстрировали, научив трех обезьян, объединенных в "локальную сеть", контролировать движение виртуальной руки на экране компьютера. Каждое животное отвечало за управление двумя из трех осей движения руки - X и Y, X и Z, Y и Z.
Изображение
© Duke Center for Neuroengineering
Обезьяны, благодаря "совместному" нейроинтерфейсу и семи сотням электродов, встроенных в их двигательную кору, могли обмениваться информацией о положении "руки" на экране их монитора и корректировать ее движение. Через некоторое время животные "синхронизировались" и научились управлять конечностью не хуже, чем это делала одна макака-резус.

Во втором эксперименте Николелис и его коллеги достигли еще более амбициозной цели - им удалось научить четверку крыс, объединенных в "биокомпьютер", предсказывать то, будет ли сегодня дождь или нет, а также решать ряд других относительно простых вычислительных задач.

По словам ученых, им удалось доказать их главную идею и мечту - объединение нервных систем сразу нескольких животных действительно позволяет им решать более сложные задачи, зачастую недоступные для ума одного существа. Это, в частности, проявлялось в том, что крысы точнее предсказывали наступление дождя и быстрее решали другие задачи.

Сейчас группа Николелиса, а также ряд нейрофизиологов из проекта Walk Again, работают над адаптацией данных "совместных" нейроинтерфейсов для работы с мозгом человека. Их создание позволит, как объясняют ученые, не только объединять человеческие умы в прямом смысле этого слова, но и обучать парализованных инвалидов пользоваться протезами ног и рук, и заново учиться ходить.